A Comparison of Crowd-Sourcing vs. Traditional Techniques for Deriving Consumer Terms

Thomas S Methven1,3 Pawel M Orzechowski1 Douglas Atkinson2 Sharon Baurley2 Mike J Chantler1

1Texture Lab Heriot-Watt University Edinburgh, EH14 4AS, UK
2Brunel University Uxbridge, UB8 3PH, UK
3Correspondence: tm112@hw.ac.uk

ABSTRACT
In this paper, we present a comparison between controlled laboratory experiments and crowd-sourcing techniques for gathering consumer terms. We discuss the difference between the data gathered from these techniques and how crowd-sourcing can be used to increase engagement and seek feedback from your customers via the internet or other digital methods. As a case study, we present a new set of unipolar scales for fabric description, which we believe are recognisable and understandable for non-experts in the field.

Categories and Subject Descriptors
H.5.m [Miscellaneous]: Information Interfaces and Presentation (e.g. HCI) Miscellaneous.

General Terms
Design, Experimentation, Human Factors, Languages

Keywords
Crowd-Sourcing, Design Language, Consumer Terms, Fabrics

1. INTRODUCTION
With the proliferation of online shops selling clothing and other such products which rely so heavily on a user's ability to accurately judge material characteristics, there is a growing need for an accurate perceptual language to describe them. While there has been some work done in defining the texture space [1, 2] and some looking at the perceptual dimensions fabrics, for example [3], most of these were done with traditional experimental techniques and in the case of [3], in French. In addition, many of these fabric descriptors are decided by expert or trained witnesses, rather than the average consumer.

Instead, we aim to describe a technique which we used to illicit a set of fabric descriptors via crowd-sourcing to increase the pool of data in a quick and scalable way, and which could easily be used to engage your customers in a simple and digital manner. We also believe that giving consumers the ability to talk about and share information about fabrics and clothing in a meaningful way will dramatically increase their engagement and interest.

2. EXPERIMENTS
2.1 Property Experiments
As our goal was to develop a language which could be used by those naive to fabric and fashion, our first requirement was to determine the amount of agreement between the words experts used and those non-experts understood. To this end, we decided to refine a list of words gathered from technical journals. Starting with a list of 69 words, we performed two experiments: one to remove words not understood by naive participants and one to capture any commonly used words not on the technical list.

For the first experiment, we presented a group of 30 participants with 11 fabrics out of a set of 20 (we balanced this so each 20 fabrics were presented the same number of times) and asked them to handle and look at them as they pleased. While they were handling the fabric for two minutes we asked them for any words which they believed described it and we recorded their responses. From this we gained 429 valid words. From this list, we then removed any emotional, temporal or emotional words and those based on opinion such as 'ugly', 'old' and 'expensive'.

For the second experiment, we printed all of the original 69 words onto business cards and gave the same 30 different participants the stack in a randomised order. We then asked them to put the cards in three piles: Words they understood and used, words they understood but didn't use and words which they didn't know the meaning of. From this, we were able to give each of the 69 words a score of how well understood they were. Any scoring 0 or less was then removed as the majority of our participants didn't know their meaning.

Finally, we compiled a final set of words from our experiments. We removed 20 words from the initial set and replaced them with 29 words from naive participants. It is worth noting at this point that there were four words which were removed from the expert list, but then re-added from the word discovery experiment. We decided that the discovery experiment should take precedence as users offering a word themselves seemed a stronger indicator of use than rating a list of pre-defined words. Therefore, we were left with a final list of 78 words which non-experts could understand.

2.2 Grouping Experiments
Although we had a set of 78 words which we knew were well understood, this was clearly too many for use in simple experiments and online feedback. In addition, we suspected many of the words had similar meanings (such as 'Fluffy', 'Furry' and 'Fuzzy') and wanted to be able to use just the most representative.

As any work involving language like this is based so heavily on varying opinion and background and requires large numbers of
multiple techniques to see if it would be more time efficient to use
crowd-sourcing to gather participants in future experiments.

To better understand the set of words, we performed a series of
‘free sorting’ experiments where participants were asked to sort the
words into groups based on their meanings. They were allowed to
have any number of groups, but were asked to avoid singletons.

After the participant was finished grouping, they were asked to
indicate one word in each group which best represented their
opinion of the overall meaning of the group. This was so we could
pick a representative word from each group to form a taxonomy.

Using the collected grouping data we created a similarity matrix.
Therefore we have an average distance between every word and
each other word in the set. This allows us to easily find which
words are more similar to each other. For example, ‘Fluffy’ and
‘Fuzzy’ appear much more similar than ‘Fluffy’ and ‘Stiff’. This
distance information also allows us to ‘cluster’ the data in as many
groups as are required. When also using how often a word is
indicated as being representative, a single word can then be
chosen to name the group.

This experiment was performed in three ways, one in a typical
controlled laboratory setting using business cards with words
printed on and two using an online tool which allowed users
to group words on a computer screen. Of these two experiments, one
was performed by getting participants in the local area, (via word
of mouth, posters in local libraries, etc.) the other performed on
Amazon’s Mechanical Turk (M-Turk) crowd-sourcing framework.
We discuss the merits of the different techniques in Section 4.

3. RESULTS
The final clustering data is available online
[www.macs.hw.ac.uk/texturelab/resources/]. A dendrogram
of these results has been provided in Figure 1, with a list of the
groups and representative word scores provided in Figure 2.

For future experiments, we decided (for experiment length, and to
avoid singletons or overly large groups) to cluster the results into
11 groups, and as such got 11 words which we could use for
rating scales. We choose to present these as unipolar scales, as
Picard et al. showed that often the most obvious bipolar scales can
be incorrect [3].

The 11 unipolar scales are: Smooth, Synthetic, Natural, Delicate,
Flexible, Irregular, Textured, Coarse, Warm, Fuzzy and Heavy.

4. TECHNIQUE COMPARISONS
As mentioned in Section 2.2, we performed the grouping
experiment with three distinct groups. In addition to collecting
data, we were therefore also able to come to some conclusions
about the differing methods. The graph in Figure 3 shows the
normalised scores of each participant as a distance from
the average groupings. We used this to look at the difference in
distributions between the different methods as each group had
different numbers of participants.

To perform some simple analysis of the results, we decided to take
the laboratory experiments as the ground truth and compare the
other methods to see if they were statistically similar. It became
readily apparent that both the laboratory experiments and those
performed with word of mouth participants were not statistically
different (p = 0.53), whereas the M-Turk results were (p = 0.012
and p = 0.039 vs. laboratory and word of mouth). This presents an
interesting problem, because we were able to get vastly more
participants using M-Turk than the other methods, but the data is
much noisier.

One of the problems which we encountered with M-Turk was the
motivation of the participants. In the laboratory experiments and
with the participants sourced from the local area, they approached
us and as such were eager to do the experiment. Therefore they
were likely to listen to the instructions and perform the best they
were able. Participants on M-Turk, however, are much more
likely to be participating for the small financial reward.

Although necessary in many experiment designs, it therefore
becomes much more important in M-Turk experiments to attempt
to remove outliers and ‘cheaters’ in the process. This is a complex
problem and requires many different techniques to solve. For
example, we noticed a clear difference in results between those
who took a very short time and those who took longer. We
decided to remove any participant who took less than 5 minutes
to complete the experiment, as well as those who were too far from
the ‘average’ result of all the participants. Using these two metrics
we found our M-Turk results were greatly improved and the
average participant distance was no longer statistically different.

Another problem perhaps more prevalent for us was the
background of the participants. Due to experiment being about
language, we decided to limit our participants to those who were
native English speakers. While M-Turk has options to limit
experiments to those who fit your specific criteria, we found it
insufficient. To try and combat this, we prefaced our experiment
with a word meaning test to remove those who were unsuitable.

5. CONCLUSIONS
Our findings showed us that M-Turk is a viable way to get large
quantities of data in a short amount of time. There were, however,
a few important considerations when using it. First, of course, the
experiment must be able to run on a wide variety of computers.
Second, the data returned is much noisier than data collected from
people who volunteer in the usual way and so, before you begin, it
helps to have metrics to remove cheaters or outliers. Finally, if the
experiment requires any specific weeding out of participants (such
as native language or background) you can't rely on the onbuilt M-
Turk tools and should test participants before the experiment.

Despite this, we were able to use a combination of both digital
and traditional laboratory experiments to get a large quantity of
participants in a short amount of time, which we believe led to a
much stronger result and more universally acceptable and
understandable unipolar scales for future use.

6. ACKNOWLEDGEMENTS
We wish to thank the EPSRC for funding this project through
grants EP/F02553X/1 and EP/H007083/2.

7. REFERENCES
texture perception. CVGIP: Graphical Models and Image
Processing, 55, 3 1993), 218-233.
Figure 1 - Properties Dendrogram

Figure 2 – Property Groups and Representative Word Scores (N.B. Colours correlate to Figure 1)

Figure 3 - Technique Results Comparison